Serveur d'exploration sur le peuplier

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Genome-wide analysis of salt-responsive and novel microRNAs in Populus euphratica by deep sequencing.

Identifieur interne : 002211 ( Main/Exploration ); précédent : 002210; suivant : 002212

Genome-wide analysis of salt-responsive and novel microRNAs in Populus euphratica by deep sequencing.

Auteurs : Jingna Si ; Tao Zhou ; Wenhao Bo ; Fang Xu ; Rongling Wu

Source :

RBID : pubmed:25079824

Descripteurs français

English descriptors

Abstract

BACKGROUND

Populus euphratica is a representative model woody plant species for studying resistance to abiotic stresses such as drought and salt. Salt stress is one of the most common environmental factors that affect plant growth and development. MicroRNAs (miRNAs) are small, noncoding RNAs that have important regulatory functions in plant growth, development, and response to abiotic stress.

RESULTS

To investigate the miRNAs involved in the salt-stress response, we constructed four small cDNA libraries from P. euphratica plantlets treated with or without salt (300 mM NaCl, 3 days) in either the root or leaf. Using high-throughput sequencing to identify miRNAs, we found 164 conserved miRNAs belonging to 44 families. Of these, 136 novel miRNAs were from the leaf, and 128 novel miRNAs were from the root. In response to salt stress, 95 miRNAs belonging to 46 conserved miRNAs families changed significantly, with 56 miRNAs upregulated and 39 miRNAs downregulated in the leaf. A comparison of the leaf and root tissues revealed 155 miRNAs belonging to 63 families with significantly altered expression, including 84 upregulated and 71 downregulated miRNAs. Furthermore, 479 target genes in the root and 541 targets of novel miRNAs in the leaf were predicted, and functional information was annotated using the Gene Ontology and Kyoto Encyclopedia of Genes and Genomes databases.

CONCLUSIONS

This study provides a novel visual field for understanding the regulatory roles of miRNAs in response to salt stress in Populus.


DOI: 10.1186/1471-2156-15-S1-S6
PubMed: 25079824
PubMed Central: PMC4118626


Affiliations:


Links toward previous steps (curation, corpus...)


Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Genome-wide analysis of salt-responsive and novel microRNAs in Populus euphratica by deep sequencing.</title>
<author>
<name sortKey="Si, Jingna" sort="Si, Jingna" uniqKey="Si J" first="Jingna" last="Si">Jingna Si</name>
</author>
<author>
<name sortKey="Zhou, Tao" sort="Zhou, Tao" uniqKey="Zhou T" first="Tao" last="Zhou">Tao Zhou</name>
</author>
<author>
<name sortKey="Bo, Wenhao" sort="Bo, Wenhao" uniqKey="Bo W" first="Wenhao" last="Bo">Wenhao Bo</name>
</author>
<author>
<name sortKey="Xu, Fang" sort="Xu, Fang" uniqKey="Xu F" first="Fang" last="Xu">Fang Xu</name>
</author>
<author>
<name sortKey="Wu, Rongling" sort="Wu, Rongling" uniqKey="Wu R" first="Rongling" last="Wu">Rongling Wu</name>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2014">2014</date>
<idno type="RBID">pubmed:25079824</idno>
<idno type="pmid">25079824</idno>
<idno type="doi">10.1186/1471-2156-15-S1-S6</idno>
<idno type="pmc">PMC4118626</idno>
<idno type="wicri:Area/Main/Corpus">002062</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Corpus" wicri:corpus="PubMed">002062</idno>
<idno type="wicri:Area/Main/Curation">002062</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Curation">002062</idno>
<idno type="wicri:Area/Main/Exploration">002062</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">Genome-wide analysis of salt-responsive and novel microRNAs in Populus euphratica by deep sequencing.</title>
<author>
<name sortKey="Si, Jingna" sort="Si, Jingna" uniqKey="Si J" first="Jingna" last="Si">Jingna Si</name>
</author>
<author>
<name sortKey="Zhou, Tao" sort="Zhou, Tao" uniqKey="Zhou T" first="Tao" last="Zhou">Tao Zhou</name>
</author>
<author>
<name sortKey="Bo, Wenhao" sort="Bo, Wenhao" uniqKey="Bo W" first="Wenhao" last="Bo">Wenhao Bo</name>
</author>
<author>
<name sortKey="Xu, Fang" sort="Xu, Fang" uniqKey="Xu F" first="Fang" last="Xu">Fang Xu</name>
</author>
<author>
<name sortKey="Wu, Rongling" sort="Wu, Rongling" uniqKey="Wu R" first="Rongling" last="Wu">Rongling Wu</name>
</author>
</analytic>
<series>
<title level="j">BMC genetics</title>
<idno type="eISSN">1471-2156</idno>
<imprint>
<date when="2014" type="published">2014</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Gene Library (MeSH)</term>
<term>High-Throughput Nucleotide Sequencing (MeSH)</term>
<term>MicroRNAs (genetics)</term>
<term>Plant Leaves (genetics)</term>
<term>Plant Roots (genetics)</term>
<term>Populus (genetics)</term>
<term>RNA, Plant (genetics)</term>
<term>Sodium Chloride (MeSH)</term>
<term>Stress, Physiological (genetics)</term>
</keywords>
<keywords scheme="KwdFr" xml:lang="fr">
<term>ARN des plantes (génétique)</term>
<term>Banque de gènes (MeSH)</term>
<term>Chlorure de sodium (MeSH)</term>
<term>Feuilles de plante (génétique)</term>
<term>Populus (génétique)</term>
<term>Racines de plante (génétique)</term>
<term>Stress physiologique (génétique)</term>
<term>Séquençage nucléotidique à haut débit (MeSH)</term>
<term>microARN (génétique)</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="genetics" xml:lang="en">
<term>MicroRNAs</term>
<term>RNA, Plant</term>
</keywords>
<keywords scheme="MESH" qualifier="genetics" xml:lang="en">
<term>Plant Leaves</term>
<term>Plant Roots</term>
<term>Populus</term>
<term>Stress, Physiological</term>
</keywords>
<keywords scheme="MESH" qualifier="génétique" xml:lang="fr">
<term>ARN des plantes</term>
<term>Feuilles de plante</term>
<term>Populus</term>
<term>Racines de plante</term>
<term>Stress physiologique</term>
<term>microARN</term>
</keywords>
<keywords scheme="MESH" xml:lang="en">
<term>Gene Library</term>
<term>High-Throughput Nucleotide Sequencing</term>
<term>Sodium Chloride</term>
</keywords>
<keywords scheme="MESH" xml:lang="fr">
<term>Banque de gènes</term>
<term>Chlorure de sodium</term>
<term>Séquençage nucléotidique à haut débit</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">
<p>
<b>BACKGROUND</b>
</p>
<p>Populus euphratica is a representative model woody plant species for studying resistance to abiotic stresses such as drought and salt. Salt stress is one of the most common environmental factors that affect plant growth and development. MicroRNAs (miRNAs) are small, noncoding RNAs that have important regulatory functions in plant growth, development, and response to abiotic stress.</p>
</div>
<div type="abstract" xml:lang="en">
<p>
<b>RESULTS</b>
</p>
<p>To investigate the miRNAs involved in the salt-stress response, we constructed four small cDNA libraries from P. euphratica plantlets treated with or without salt (300 mM NaCl, 3 days) in either the root or leaf. Using high-throughput sequencing to identify miRNAs, we found 164 conserved miRNAs belonging to 44 families. Of these, 136 novel miRNAs were from the leaf, and 128 novel miRNAs were from the root. In response to salt stress, 95 miRNAs belonging to 46 conserved miRNAs families changed significantly, with 56 miRNAs upregulated and 39 miRNAs downregulated in the leaf. A comparison of the leaf and root tissues revealed 155 miRNAs belonging to 63 families with significantly altered expression, including 84 upregulated and 71 downregulated miRNAs. Furthermore, 479 target genes in the root and 541 targets of novel miRNAs in the leaf were predicted, and functional information was annotated using the Gene Ontology and Kyoto Encyclopedia of Genes and Genomes databases.</p>
</div>
<div type="abstract" xml:lang="en">
<p>
<b>CONCLUSIONS</b>
</p>
<p>This study provides a novel visual field for understanding the regulatory roles of miRNAs in response to salt stress in Populus.</p>
</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="MEDLINE" Owner="NLM">
<PMID Version="1">25079824</PMID>
<DateCompleted>
<Year>2014</Year>
<Month>10</Month>
<Day>16</Day>
</DateCompleted>
<DateRevised>
<Year>2018</Year>
<Month>11</Month>
<Day>13</Day>
</DateRevised>
<Article PubModel="Print-Electronic">
<Journal>
<ISSN IssnType="Electronic">1471-2156</ISSN>
<JournalIssue CitedMedium="Internet">
<Volume>15 Suppl 1</Volume>
<PubDate>
<Year>2014</Year>
</PubDate>
</JournalIssue>
<Title>BMC genetics</Title>
<ISOAbbreviation>BMC Genet</ISOAbbreviation>
</Journal>
<ArticleTitle>Genome-wide analysis of salt-responsive and novel microRNAs in Populus euphratica by deep sequencing.</ArticleTitle>
<Pagination>
<MedlinePgn>S6</MedlinePgn>
</Pagination>
<ELocationID EIdType="doi" ValidYN="Y">10.1186/1471-2156-15-S1-S6</ELocationID>
<Abstract>
<AbstractText Label="BACKGROUND" NlmCategory="BACKGROUND">Populus euphratica is a representative model woody plant species for studying resistance to abiotic stresses such as drought and salt. Salt stress is one of the most common environmental factors that affect plant growth and development. MicroRNAs (miRNAs) are small, noncoding RNAs that have important regulatory functions in plant growth, development, and response to abiotic stress.</AbstractText>
<AbstractText Label="RESULTS" NlmCategory="RESULTS">To investigate the miRNAs involved in the salt-stress response, we constructed four small cDNA libraries from P. euphratica plantlets treated with or without salt (300 mM NaCl, 3 days) in either the root or leaf. Using high-throughput sequencing to identify miRNAs, we found 164 conserved miRNAs belonging to 44 families. Of these, 136 novel miRNAs were from the leaf, and 128 novel miRNAs were from the root. In response to salt stress, 95 miRNAs belonging to 46 conserved miRNAs families changed significantly, with 56 miRNAs upregulated and 39 miRNAs downregulated in the leaf. A comparison of the leaf and root tissues revealed 155 miRNAs belonging to 63 families with significantly altered expression, including 84 upregulated and 71 downregulated miRNAs. Furthermore, 479 target genes in the root and 541 targets of novel miRNAs in the leaf were predicted, and functional information was annotated using the Gene Ontology and Kyoto Encyclopedia of Genes and Genomes databases.</AbstractText>
<AbstractText Label="CONCLUSIONS" NlmCategory="CONCLUSIONS">This study provides a novel visual field for understanding the regulatory roles of miRNAs in response to salt stress in Populus.</AbstractText>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Si</LastName>
<ForeName>Jingna</ForeName>
<Initials>J</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Zhou</LastName>
<ForeName>Tao</ForeName>
<Initials>T</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Bo</LastName>
<ForeName>Wenhao</ForeName>
<Initials>W</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Xu</LastName>
<ForeName>Fang</ForeName>
<Initials>F</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Wu</LastName>
<ForeName>Rongling</ForeName>
<Initials>R</Initials>
</Author>
</AuthorList>
<Language>eng</Language>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
<PublicationType UI="D013485">Research Support, Non-U.S. Gov't</PublicationType>
</PublicationTypeList>
<ArticleDate DateType="Electronic">
<Year>2014</Year>
<Month>06</Month>
<Day>20</Day>
</ArticleDate>
</Article>
<MedlineJournalInfo>
<Country>England</Country>
<MedlineTA>BMC Genet</MedlineTA>
<NlmUniqueID>100966978</NlmUniqueID>
<ISSNLinking>1471-2156</ISSNLinking>
</MedlineJournalInfo>
<ChemicalList>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D035683">MicroRNAs</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D018749">RNA, Plant</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>451W47IQ8X</RegistryNumber>
<NameOfSubstance UI="D012965">Sodium Chloride</NameOfSubstance>
</Chemical>
</ChemicalList>
<CitationSubset>IM</CitationSubset>
<MeshHeadingList>
<MeshHeading>
<DescriptorName UI="D015723" MajorTopicYN="N">Gene Library</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D059014" MajorTopicYN="Y">High-Throughput Nucleotide Sequencing</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D035683" MajorTopicYN="N">MicroRNAs</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="Y">genetics</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D018515" MajorTopicYN="N">Plant Leaves</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D018517" MajorTopicYN="N">Plant Roots</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D032107" MajorTopicYN="N">Populus</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="Y">genetics</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D018749" MajorTopicYN="N">RNA, Plant</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D012965" MajorTopicYN="Y">Sodium Chloride</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D013312" MajorTopicYN="N">Stress, Physiological</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
</MeshHeading>
</MeshHeadingList>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="entrez">
<Year>2014</Year>
<Month>8</Month>
<Day>1</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="pubmed">
<Year>2014</Year>
<Month>8</Month>
<Day>1</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2014</Year>
<Month>10</Month>
<Day>17</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>ppublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">25079824</ArticleId>
<ArticleId IdType="pii">1471-2156-15-S1-S6</ArticleId>
<ArticleId IdType="doi">10.1186/1471-2156-15-S1-S6</ArticleId>
<ArticleId IdType="pmc">PMC4118626</ArticleId>
</ArticleIdList>
<ReferenceList>
<Reference>
<Citation>Mol Biol Rep. 2011 Jan;38(1):237-42</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20336383</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Ann Bot. 2008 Oct;102(4):509-19</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18669574</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Curr Biol. 2006 Jun 6;16(11):R424-33</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16753558</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genome Res. 2008 Apr;18(4):571-84</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18323537</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell. 2006 Aug;18(8):2051-65</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16861386</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>BMC Genomics. 2009;10:620</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20021695</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Methods. 2008 Jan;44(1):3-12</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18158127</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant J. 2008 Jul;55(1):131-51</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18363789</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Planta. 2010 Apr;231(5):991-1001</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20135324</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Dev Cell. 2005 Apr;8(4):517-27</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15809034</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>RNA. 2008 May;14(5):836-43</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18356539</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>EMBO J. 2001 Feb 1;20(3):316-29</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11157739</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Curr Opin Biotechnol. 2005 Apr;16(2):123-32</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15831376</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>FEBS Lett. 2009 Feb 18;583(4):723-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19167382</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>BMC Genomics. 2011;12:367</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21762498</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>BMC Genomics. 2007;8:481</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18166134</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochimie. 2013 Apr;95(4):743-50</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23142627</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant J. 2002 Aug;31(3):279-92</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12164808</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Dev Biol. 2006 Jan 1;289(1):3-16</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16325172</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Mol Biol. 2005 May;58(1):75-88</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16028118</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochem Biophys Res Commun. 2009 Jan 16;378(3):483-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19032934</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Annu Rev Plant Biol. 2006;57:19-53</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16669754</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genes Dev. 2011 Sep 15;25(18):1881-94</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21896651</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Biol Rep. 2012 Sep;39(9):8645-54</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22718503</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 2007 Apr;143(4):1467-83</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17293439</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Mol Biol. 2009 Sep;71(1-2):51-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19533381</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nucleic Acids Res. 2008 Jan;36(Database issue):D480-4</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18077471</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cell. 1993 Dec 3;75(5):843-54</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8252621</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nucleic Acids Res. 2011 Jul;39(Web Server issue):W155-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21622958</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>New Phytol. 2011 Apr;190(2):442-56</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20840511</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Ann Bot. 2009 Jan;103(1):29-38</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18952624</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cell. 2004 Jan 23;116(2):281-97</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">14744438</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Cell. 2004 Jun 18;14(6):787-99</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15200956</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell. 2008 Aug;20(8):2238-51</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18682547</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>BMC Mol Biol. 2009;10:29</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19351418</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Exp Bot. 2011 Jul;62(11):3765-79</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21511902</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell. 2004 Aug;16(8):2001-19</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15258262</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>BMC Plant Biol. 2010;10:3</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20047695</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 2006 Jan 6;311(5757):91-4</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16400150</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Planta. 2010 Feb;231(3):705-16</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20012085</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Exp Bot. 2010 Oct;61(15):4157-68</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20729483</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell Rep. 2011 Oct;30(10):1893-907</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21706230</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Sci STKE. 2002 Jul 9;2002(140):re10</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12107340</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>BMC Genomics. 2009;10:449</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19772667</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Planta. 2009 Mar;229(4):1009-14</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19148671</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell. 2005 Aug;17(8):2186-203</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15994906</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nucleic Acids Res. 2008 Jan;36(Database issue):D154-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17991681</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Plant Physiol. 2009 Dec 15;166(18):2046-57</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19628301</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cell. 2005 Apr 22;121(2):207-21</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15851028</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>BMC Genomics. 2008;9:593</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19068109</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nucleic Acids Res. 2012 Jan;40(Database issue):D48-53</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22144687</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Bioinformatics. 2008 Mar 1;24(5):713-4</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18227114</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell. 2008 Dec;20(12):3186-90</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19074682</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Mol Biol. 1999 May 21;288(5):911-40</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10329189</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nucleic Acids Res. 2006 Jan 1;34(Database issue):D140-4</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16381832</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant J. 2010 Mar;61(6):1041-52</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20409277</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Curr Opin Plant Biol. 2003 Oct;6(5):470-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12972048</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 2006 Apr 21;312(5772):436-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16627744</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Annu Rev Plant Physiol Plant Mol Biol. 2000 Jun;51:463-499</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15012199</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
</PubmedData>
</pubmed>
<affiliations>
<list></list>
<tree>
<noCountry>
<name sortKey="Bo, Wenhao" sort="Bo, Wenhao" uniqKey="Bo W" first="Wenhao" last="Bo">Wenhao Bo</name>
<name sortKey="Si, Jingna" sort="Si, Jingna" uniqKey="Si J" first="Jingna" last="Si">Jingna Si</name>
<name sortKey="Wu, Rongling" sort="Wu, Rongling" uniqKey="Wu R" first="Rongling" last="Wu">Rongling Wu</name>
<name sortKey="Xu, Fang" sort="Xu, Fang" uniqKey="Xu F" first="Fang" last="Xu">Fang Xu</name>
<name sortKey="Zhou, Tao" sort="Zhou, Tao" uniqKey="Zhou T" first="Tao" last="Zhou">Tao Zhou</name>
</noCountry>
</tree>
</affiliations>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Bois/explor/PoplarV1/Data/Main/Exploration
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 002211 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd -nk 002211 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Bois
   |area=    PoplarV1
   |flux=    Main
   |étape=   Exploration
   |type=    RBID
   |clé=     pubmed:25079824
   |texte=   Genome-wide analysis of salt-responsive and novel microRNAs in Populus euphratica by deep sequencing.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/Main/Exploration/RBID.i   -Sk "pubmed:25079824" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd   \
       | NlmPubMed2Wicri -a PoplarV1 

Wicri

This area was generated with Dilib version V0.6.37.
Data generation: Wed Nov 18 12:07:19 2020. Site generation: Wed Nov 18 12:16:31 2020